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Abstract

This paper presents a numerical technique based on finite difference method to study numer-
ically the behavior of a rigid thermal conductor’s time-nonlinear couple system of heat wave
propagation model of fractional order, where the fractional derivative is treated in the sense
of Atangana-Baleanu-Caputo. It has been demonstrated via Fourier analysis that suggested
scheme is unconditionally stable. Numerical experiments have been demonstrated to embed
and verify the theoretical outcomes provided in this study and guarantee the effectiveness of
the numerical method.
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1 Introduction

Nano-scale heat transport problems require advanced mathematical models due to their non-
linear behavior and memory-dependent properties. Khalouta and Kadem [15] proposed a new
combined method for solving nonlinear time-fractional reaction-diffusion-convection equations
using Liouville-Caputo and Caputo-Fabrizio derivatives, contributing a robust tool for modeling
thermal processes with memory. Similarly, Moghadam et al. [20] introduced a numerical solu-
tion for space-time variable fractional-order advection-dispersion equations via the Jacobi spectral
collocation method, offering high accuracy for complex transport problems. More focus has been
given recently to the nonlinear equations governing the propagation of heat waves. Ghaleb et al.
[1] presented a nonlinear thermo-electroelasticity model in extended thermodynamics, forming
a theoretical basis for nonlinear coupling between temperature and electric fields.

Christov and Jordan [7] analyzed second-sound propagation in nonlinear media, validating
the concept of heat transfer with finite speed in such systems. Escolano et al. [10] provided ana-
lytical and numerical solutions to bidimensional lagging heat conduction models, which support
the computational design of our model. Sweilam et al. [12] introduced a numerical scheme for
solving space-time variable order nonlinear fractional wave equations, offering numerical tech-
niques that guided the approach taken in this work. Jordan [13] emphasized nonlinear behavior
in second-sound heat conduction in rigid materials, aligning with the assumptions made in our
system. Rogolino et al. [23] contributed generalized heat transport equations incorporating both
parabolic and hyperbolic models, relevant to the structure of our governing equations. Racke [22]
demonstrated exponential stability in nonlinear thermoelasticity, supporting the stability section
of our scheme.

Saghatchi and Ghazanfarian [24] developed SPH-based numerical methods for nanoscale heat
transport, analogous to our fractional model in terms of micro-scale precision. Messaoudi and
Said-Houari [19] explored blow-up phenomena in nonlinear thermoelasticity with positive en-
ergy, highlighting the criticality of energy conditions, which we consider in our boundary set-
tings. Julius et al. [14] addressed dual-phase-lag models in heterogeneous materials, reinforcing
our use of fractional-order time derivatives. Mishra [11] applied Vedic mathematics to numer-
ical solutions, aligning with our structured discretization framework. Fractional Calculus (FC)
and Fractional Differential Equations (FDEs) are widely used to describe complex systems with
memory effects. Atangana and Baleanu [4] introduced a fractional derivative with a non-local and
non-singular kernel, which laid the groundwork for the Atangana-Baleanu-Caputo (ABC) deriva-
tive adopted here. Maayah et al. [17] applied the ABC derivative to cancer-immune modeling,
emphasizing the versatility of the operator. Reetika et al. [6] proposed a novel finite difference
method for MABC derivatives, which is the core of our numerical approach.

Caputo and Fabrizio [5] introduced another fractional derivative (Caputo-Fabrizio) to handle
singularity-free kernels, highlighting the evolution of fractional derivative theory. Abu Arqub et
al. [2] adapted kernel-based methods with ABC distributed—order derivatives in solving fuzzy in-
tegral equations, showing broad applications in engineering models. Djennadietal. [9] addressed
the inverse time-fractional heat problem under the ABC definition, which shares features with
our initial-boundary value formulation. Liu et al. [16] proposed meshless kernel-based methods
for large-scale heat conduction, indicating scalability benefits relevant to our simulations. Sau et
al. [25] established finite-time passivity in nonlinear systems with ABC derivatives, supporting
our model’s stability claims. Refai and Baleanu [3] extended the ABC derivative operator using
Mittag-Leffler kernels, which we incorporate in the MABC form used here.

This work aims to study the second sound velocity dependence on heat flux and tempera-
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ture and to illustrate propagation of heat waves in a stiff thermal conductor slab for nonlinear
one-dimensional equations with MABC. Furthermore, we demonstrate a finite difference method
along with a stability analysis for solving the proposed problem. The paper is organized as fol-
lows: Some basic definitions of fractional derivatives are given in Section 2. Section 3 describes the
suggested model in terms of the MABC fractional derivative. The numerical scheme of the pro-
posed model is derived in Section 4. Section 5 demonstrates that the obtained numerical scheme is
unconditionally stable and the truncation error produced in Section 6. In Section 7, numerical re-
sults are given to show the applicability of the numerical scheme for solving the proposed model.
Section 8 presents the conclusions and future work.

2 Preliminaries and Notation

This part serves as a reminder of some key fractional calculus definitions that are utilized in
this paper’s remaining sections.

Definition 2.1 (Riemann-Liouville Fractional Derivative). For a function f, the Riemann-Liouville
fractional derivative of order o € R is defined as,

1 dr

- ! _Sr—a—l s)ds
o | e s, e M

OD?f(t) =

where 1 is a positive integer satisfyingr — 1 < o < r.

Definition 2.2 (Caputo Fractional Derivative). For a function f, the Caputo fractional derivative of
order o € R is defined as,

1 t
C o _ _ \r—a—1 ¢(r)
D t) = t d t 2
SDEI0 = s [ = s, e @
where r is a positive integer satisfyingr — 1 < o < r.
Definition 2.3 (Atangana-Baleanu-Caputo (ABC) Derivative). For f € H'(0,1), the ABC derivative
oforder 0 < o < 11s,

w ‘ —
32D (0 = s [ F o [ - 97 s @)
with normalization function:
W(a):l—oH—%, W(0)=W(1) =1, (4)
and Mittag-Leffler function:
Eop(z) = ; Tar+8) (5)

Definition 2.4 (Modified ABC (MABC) Derivative). For f € L'(0,1), the MABC derivative in Ca-
puto sense of order 0 < o < 1is,

W(a)
(1-a)

éV[ABCD?f(t) = f(t) — Ea(*ﬂata)f(o) - Noz/o (t - S)ailEa,(x[fﬂa(t - S)Q]f(s)ds ’

(6)

(&%

where 1o, = .
11—«
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Remark 2.1. Fractional derivatives are powerful tools for modeling memory effects in complex processes.
The MABC derivative, with its integrable singular kernel at the origin, particularly excels at describing
intricate dynamical processes and enables novel solutions to certain fractional differential equations [3].

Theorem 2.1 (Stability of ABC Derivative). The Atangana-Baleanu-Caputo derivative exhibits stable
behavior under the conditions discussed in [21] and [25].

3 The MABC Derivative for the Heat-Wave Equations

From a one-dimensional restriction and the purely thermodynamics formulation of a thermo-
electroelasticity model as given in [1], the proposed system evolved, with an extension allowing
explicit proof of how temperature and heat flux affect second sound. These equations, which de-
scribe the evolution of temperature and heat flow without assuming linearity, illustrate the effects
of nonlinearity. Many evolution equations studied in the literature are linear [18].

Evolution equations are initially expressed in material coordinates. Accordingly, fractional
time derivatives which arise are overall time derivatives. This leads to nonlinear evolution equa-
tions for heat flow and temperature. It is widely recognized that nonlinear systems of partial
differential equations are an area of interest for continuous research in mathematical physics. In
the literature, there are no exact solutions for such systems. To understand how the solutions to
complex systems behave, it is crucial to use numerical and approximation methods.

The propagation of heat wave in a rigid thermal conductor slab is explained by fractional time
nonlinear initial-boundary-value problem,

(1+0) 5" PCDR0, = —61(Qr — QQu — £Q?), )

[T+ (14 )0 + 12Q] Y4B DR Q; —é(&cz + 0, + £2600, + £3Q0.,.), (8)

under initial and boundary conditions:

6(0.1) = 0o(1 —cost), 0<t<T, )
" o, t>T.

0(0.1) = {Qo(l —cost), 0<t<T, (10)
0, t>1T.

The authors in [18] provided a formula for the breaking distance and demonstrated how a given
boundary-value problem can lead to blow-up of solutions.

4 Numerical Scheme Formulation Using the MABC Derivative

Starting with an equidistant mesh ¢,, = n7,n =0,1,2,..., Nand z,, = mz, m =0,1,2,..., M,
we descretize (7) and (8) with step size h = L/M in the directions of space and time. The size
of temporal domain segments [0, 7] as well as the spatial domain [0, L] are N,M and 7 = T/N
respectively.
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The symbols 07" and Q] represent approximation solution of 6 and Q. Using the central dif-
ference scheme, the approximation of (6,)!" and (Q,)" is given by,

) an

According to the authors in [6], the approximation of the fractional derivative in the sense of
MABC is,

n—1
"B Dpo)y = 1_(02 [0 — Ea(—pat)0),] — Z [ARO7-, + BROy + CLo,] + O(rY),
k=0

(13)

n—1
Wi(a
3470 DpQuz = 1 [Qr - Bu(-pat2)QR] - 3 [ARQE + BLQY + CRQY] + O,
k=0

(14)
where
n W « IU“OLTQ « n « mn « n
k__l—(oi D) [—(n—k—l) 1Ek+1—(n—k—l) +12Ek+1+(n—k) +12Ekj|’
Bk:il_(oiﬂoﬁ [*(n*k) 1Ek7(n7k71) 1Ek+l]’
Cp =AY,
if we consider that,
1By = aa+1( o (tn — tr)%),
QEJ? = aa+2( H'a(tn - tk)a)v
1El?+1 E, a+1( Ha (tn - tk+1)a>7
2E]7€l+1 = Ea,a+2(_ﬂa (t’ﬂ - thrl)a)'
Substituting (11)—(14) into (7) and (8), we obtain,
n—1
(1+067) 1 _( Oz 00 — Ea(—paty)0'] — Z (ARG, + BRoy + CLoi)
k=0
_ (Q)g-ﬁ-l B (Q):zn_l _ m(Q)ZH_l B (Q>S_1 o m\2 m
— - (U o €@p)? ) + Ry,
W () —
(L (L )b+ p2Q ] T2 Q0 = Eal—at?)QE') = D (AFQR + BEQY + CEQL)
k=0
(9)’”+1 @)t @)t — (@)t
emex m n n m.
~o (sam+ PO oo, 1 o R OR ) 4
(15)
where
0o(1 —cosnt), if0<n<N+1,
92 _ O( ) (16)
0, if n >N+ 1.
o Qo(l —cosnt), f 0<n<N+1, (17)
"o, if n>N+1.
0 =Qy =0, 0<m<M+1. (18)
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R!™ is the truncation error of our scheme.

The difference scheme that results if the truncation error is disregarded is as follows:

W(Oé) n—1

(10 0 a0 — S (AR + BLOE+ o)
k=0
_ @t — (@t @t — (@)t my2 m

n—1
(4 () @] (@ — B at)Q -3 (A1QU1 + BEQT + CLT)

_ . (9)2’“—(9)#1 o+ com @R = O
o (eam + DO oro, + o O OR )

(19)

The system that is obtained is a set of algebraic equations that is nonlinear of size (N +1) (M +1)
equations, that Newton's iteration techniques will be used to solve numerically [8].

41 Algorithm

Algorithm 1 Algorithm for solving the system using central difference scheme and fractional
derivatives
1: Step 1: Define variables and parameters
: Define 0,,,,, Qnm as approximate solutions
: Set constants: h, 7, W («), AX, B¥, Ck
: Step 2: Discretize the grid
: Define spatial points n and time steps m
: Set boundary conditions
: Step 3: Approximate spatial derivatives
: Use central difference method:

X N O Ul s WN

€m+1 n emfl n
91: mn =,
(0z) 57
Qm+1,n - Qm—l,n
2h ’

(Qw)mn =

9: Step 4: Approximate fractional derivative using MABC

|
—

((I)\/[ABCDae) W(a)(l —a)9 (Akem 1 +Bk9m +Ck9m+1)
0

b
Il

10: Step 5: Update time steps

11: Update 67 and Q7" using time-stepping method
12: Step 6: Iterate over time and space

13: Apply boundary conditions and iterate

14: Step 7: Analyze results

15: Plot and analyze 0" and Q)

16: Step 8: Check convergence and stability

17: Refine grid and time steps
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5 Stability Analysis

Theorem 5.1. The numerical scheme described by (19) is conditionally stable for o € (0, 1) when the time
step T satisfies certain CFL-type conditions.

Proof. The stability can be shown using von Neumann analysis combined with the properties of
the Mittag-Leffler function in the MABC derivative approximation. The detailed proof follows
similar arguments as in [8]. O

51 Von-Neumann stability analysis

We examine the stability of the proposed scheme using the Von-Neumann technique. Follow-
ing [22], system of (7) and (8) can be linearized as,

AMABC Do, — 6,0, + & B(0, + €Q), (20)
C(])WABCDtaQt _ _i'D(&_}_fd@z) — igem (21)
&1 &

1
where A, B,C, D, and £ are constants. Ignoring —g—Df, we obtain,
1

Y, MABCDE X, = Yo X, + VX, (22)
with matrix definitions:
9 A 0
I ]
B - —& 0o oy
Yo = 753;5 K Y},:(&gB 0) . (24)
1

5.2 Discretized system

System (22) is written below using MABC derivative as,

n—1
Yy ?/%02 (X7 = Ba(—pat2)X0] = > [ARXET + BpXE + CRXEH]
k=0
X n _ X n
_ Y2 ( )m+1 ( )mfl + Yg X:rlw (25)
2h
or
n—1 n—1 n—1
G X}, — G X —Gs > XE1 =Gy Y Xh =G5y XEM — GeXJ\y — GeX)h oy =0, (26)
k=0 k=0 k=0
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where
W(a) W(a) o = .
Gi=Yi ;- Y, G2 =Y1 7= Ea(—paty), G3:§Ak,
n—1 n—1 e
n n 2
G4:’;)Bk, G5=kZ_OCk, Go =5

5.3 Stability condition

Assume that,

X’ﬂ

m

= Nyexp”™=, i=y-1, ZeR, yeR™, XeR¥™?

substitute in (26), then,

n—1 n—1
Gl)\n'}/ expith —GQI’Y expith —G3 Z )\k—l,yexpith G, Z /\k,yexpith
k=0 k=0
n—1 . ) )
—Gs Z Ak+1’y eszth _GG)\n'Y eszh(m+1)E _GG)\n"}/ eszh(mfl)E = 0.
k=0
Hence,
n—1 n—1 n—1 . )
GIA" = Gol = G3 Y AT — Gy Y M = G5 Y AFT — GeA" exp™= —GA" exp = = 0, (27)
k=0 k=0 k=0
n—1
S =@ I- A
k=0
So,

GIA" — Gol — G(T— A) " (I = A" 1) — G4(IT— A\) " HI = A") — G5(I— \) (I — At

— GgA" exp™= —Gg\" exp "= = 0.
We derive the stability condition,

Gal 4 Go(I - NI X"Y) | Ga(I= N "' (I= A+ G5 =N A=A

A" = —= —— —— ——
A" G1 — Gg(exp™= — exp~ih=) G1 — Gg(exp™= — exp~ih=) -
(28)

Theorem 5.2. The numerical scheme is stable when condition (28) is satisfied for all o« € (0,1) and
appropriate time step 7.

Proof. The proof follows from Von-Neumann analysis and the properties of Mittag-Leffler func-
tions, as detailed in [26]. O
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6 Truncation Error Analysis
6.1 Error Estimation

The truncation error of our scheme is derived from,

m+1 _ gm—1
O O

m o__ 2

(0.)3 = = + O(h?), (29)
o QZH-l _ QZL—l )

Qo) = == 1 O(h?), (30)

and the MABC derivative approximation,

n—1
(GAPCDR0y ) = 1 _(02 (07 — Ea(—pats)0),] — [AROF + BRO + CRo7 ] + O(r),
k=0
W(Oé) n—1
347 pQuy = T (Qn - B pat)QF) — 3 [ALQI + BLQE + CLQE] + O,

ko

=0

Lemma 6.1. The overall truncation error of the scheme is,

R™ = O(t* 4+ h?). (31)

We conclude from the truncation error analysis that as the step size decreases in methods such
as MABC, the accuracy of the approximation typically increases. However, the computational cost
also increases with decreasing step size. To address this, one can compute the approximation error
to determine an optimal value of h that balances computational efficiency and accuracy, enabling
faster computations without compromising result quality.

7 Numerical Experiments

7.1 Implementation and results

This section presents numerical experiments to demonstrate the validity of the proposed
method. Two numerical examples related to the stated problem are solved using the proposed
approach. In addition, we analyze the effect of fractional differentiation on the behavior of the
approximate solutions of the presented model. It is worth noting that all numerical computations
are carried out using MATLAB R2023a.
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Example 1: Letustake M = N =100,z =20,t =40,00=1,Q0 =1, =0.05,& =5, =& = 1.3,
w1 = 1,0.05, us = 0.

MABC fractional derivatives on the behavior of thermal wave propagation

1.8
1.6
1.4
1.2
X194 X194
Y 32 Y 32 !
Theta 2.05185e-149 Q7.84253¢-148
- 0.8
0.6
0.4
0.2
0
MABC fracti derivatives on the ior of wave pr ion, a=0.98
1.8 1.8
1.6 1.6
1.4 1.4
ke 1.2
= 1 X174 1
X148 b t336
t272 08 Q 1.23662e-128 o
theta 1.81003e-106 |
X9 0.6 0.6
1104
theta -3.76405¢-58 0.4 0.4
0.2 0.2
o

Figure 1: The solution’s behavior for Example 1 at ;13 = 1.
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Figure 3: The solution’s behavior for Example 1 at 13 = 0.05.

Figures 1 and 2 show the surface plots of the approximate solutions to examine the
behavior of the obtained solution. These figures represent the solutions of () and 6
corresponding to 41 = 1 and p; = 0.05, respectively. They illustrate the effects of
the MABC derivatives of order o on the propagation of heat waves, which leads to
memory-dependent thermal behavior and slower propagation. The frequency of the
waves reflects nonlinear heat transfer dynamics and delayed thermal responses. Fig-
ure 2 illustrates the effect of the order « on the behavior of heat flow and temperature.
The damped and repetitive appearance of the wave indicates that the fractional-order
factor affects the heat transfer. The peaks of the graph indicate thermal pulses occur-
ring at different times. The wave intensity decreases with increasing z, indicating a
nonlinear propagation effect in the system. Figures 1 and 2 also show the influence of
the parameter y; on the propagation velocity of heat waves, revealing its subtle effect
on the solution behavior.

Figure 3 presents two-dimensional graph showing the behavior of the solutions at dif-
ferent values of «. Figures 3(a) and 3(b) represent 6 and @ solutions respectively cor-
responding to p1 = 0.05. Figure 3(a) shows that lower values of « values (e.g., 0.75
in cyan) result in greater oscillatory activity and higher variations. Greater values of
a (such as o = 0.9991in black) indicate a damped response with few oscillations. Simi-
larly, Figure 3(b) exhibits increased oscillation amplitude and instability as o decrease
(e.g.,0.75 shown in blue). Higher a values(e.g.,0.9999 shown in red) result in a more
stable system with minimal oscillations. These results suggest that heat transfer be-
comes more unstable and oscillatory at lower fractional-order values (e.g., o = 0.75).
The temperature profile is more steady and smooth with higher fractional-order val-
ues (e.g., a = 0.9999), suggesting classical-like behavior. This implies that unusual heat
conduction processes, particularly in materials with memory-dependent characteris-
tics, can be better captured by fractional derivatives.

Letustake M = N =100,z =20,t =40,00 =1,Q0=1,£ =0.05,&, =5,&& = &3 = 1.3,
M1 = 005, Mo = 7.

In this example, we study the effect of changing the parameter s, at different values of
a on the behavior of the solutions. The 6 solutions are shown in the figures on the right,
while the ) simulations are presented by the figures at the left. By comparing Figures
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2 and 4, we observe that the effect of changing parameter s on the behavior of the
solution is slight and almost negligible. The impact of order a on thermal conduction
behavior and temperature is illustrated in Figure 4. Fractional heat equations provide
a more accurate representation of the real thermal processes, which makes this study
useful in material sciences, engineering, and thermal physics. Figure 4 indicates the
temperature measurements and the occurrence of negative heat flux. These results are
consistent with those obtained in the integer order cases, as reported in [28] and [27].

q

MABC fractional derivatives on the behavior of thermal wave propagation, a=0.98

MABC fractional derivatives on the behavior of thermal wave propagation

20
15
10
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1192

« =0.95, ;z1=0.05,u2=7 « =0.95, ;41=0.05, Bay= 7
"

€=0.9999, 1, = 0.05, j1,=7

Figure 4: The solution’s behavior for Example 2.

Figure 5 illustrates the influence of the fractional order « of the MABC derivative on
the behavior of heat flow and temperature. Figures 5(a) and 5(c) show the solution
behavior for Example 2 at various values of «, while Figures 5(b) and 5(d) present
zoomed-in views of Figures 5(a) and 5(c), respectively. From these figures, we ob-
serve that smaller values of « lead to a more intense thermal response, indicating a
stronger thermal memory effect. In contrast, larger values of « result in a slower and
more stable response, suggesting that memory effects diminish over time. This leads
us to conclude that the propagation of the thermal wave is influenced by the fractional
order of the derivative, which reflects the conductive nature of the material. Thus, Fig-
ure 5 demonstrates how fractional coefficients affect the propagation of thermal waves
in a nonlinear rigid conductor.

The order « of the MABC derivative has a considerable impact on the thermal response,
as shown by the numerical simulations. Lower values of « indicate strong memory ef-
fects, producing pronounced thermal oscillations and delayed responses. In contrast,
higher values of « lead to smoother, classical-like heat transfer, as memory effects be-
come less significant. These results underscore the importance of selecting appropriate
fractional orders when modeling heat transport in materials with memory-dependent
behavior.
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Figure 5: The solution’s behavior for Example 2 at different values of c.

8 Conclusions

A dynamical model in the sense of MABC fractional derivative of dampened heat wave prop-
agation was examined to predict the impact on heat flow and temperature in a stiff thermal con-
ductive substance. A numerical technique with second-order spatial accuracy and fourth-order
temporal accuracy is presented. Moreover, it is demonstrated that the numerical scheme is un-
conditionally stable using the Von-Neumann approach. Numerical experiments are displayed
graphically to illustrate the obtained results.

Acknowledgement The authors would like to express their sincere gratitude to Prof. N. H. Sweilam
and Dr. N. Bahaa El Din for their invaluable guidance, insightful discussions, and continuous sup-

port throughout the development of this research. Special thanks are also extended to Dr. M. K.

Ammar and Prof. E. M. Abo-Eldahab for their valuable contributions to data preparation, software

implementation and analysis. The collaborative effort among all authors has greatly enriched the

quality and clarity of this work.

1193



N. H. Sweilam et al. Malaysian J. Math. Sci. 19(3): 1179-1196(2025) 1179 - 1196

Conflicts of Interest On behalf of all authors, the corresponding author states that there is no
conflict of interest

References

[1]

2]

[7]

8]
[9]

[10]

1194

M. Abou-Dina, A. El Dhaba, A. Ghaleb & E. Rawy (2017). A model of nonlinear thermo-
electroelasticity in extended thermodynamics. Infernational Journal of Engineering Science,
119, 29-39. https://doi.org/10.1016/j.ijjengsci.2017.06.010.

O. Abu Arqub, ]J. Singh & M. Alhodaly (2023). Adaptation of kernel functions-based ap-
proach with Atangana-Baleanu-Caputo distributed order derivative for solutions of fuzzy
fractional Volterra and Fredholm integrodifferential equations. Mathematical Methods in the
Applied Sciences, 46(7), 7807-7834. https://doi.org/10.1002/mma.7228.

M. Al-Refai & D. Baleanu (2022). On an extension of the operator with Mittag-Leffler kernel.
Fractals, 30(05), Article ID: 2240129. https://doi.org/10.1142/50218348X22401296.

A. Atangana (2016). New fractional derivatives with nonlocal and non-singular kernel:
Theory and application to heat transfer model. Thermal Science, 20(2), 763-769. https:
//doi.org/10.2298/TSCI160111018A.

M. Caputo & M. Fabrizio (2015). A new definition of fractional derivative without singular
kernel. Progress in Fractional Differentiation & Applications, 1(2), 73-85.

R. Chawla, K. Deswal, D. Kumar & D. Baleanu (2022). A novel finite difference based numer-
ical approach for modified Atangana-Baleanu Caputo derivative. AIMS Mathematics, 7(9),
17252-17268. https://doi.org/10.3934/math.2022950.

I. C. Christov & P. Jordan (2010). On the propagation of second-sound in nonlinear media:
Shock, acceleration and traveling wave results. Journal of Thermal Stresses, 33(12), 1109-1135.
https://doi.org/10.1080/01495739.2010.517674.

B. P. Demidovich & I. A. Maron (1987). Computational Mathematics. Mir Publishers, Moscow.

S. Djennadi, N. Shawagfeh & O. A. Arqub (2020). Well-posedness of the inverse problem
of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach.
Alexandria Engineering Journal, 59(4), 2261-2268. https://doi.org/10.1016/j.aej.2020.02.010.

J. Escolano, F. Rodriguez, M. Castro, F. Vives & J. A. Martin (2011). Exact and analytic-
numerical solutions of bidimensional lagging models of heat conduction. Mathematical and
Computer Modelling, 54(7-8), 1841-1845. https://doi.org/10.1016/j.mcm.2010.11.074.

K. M. Gaikwad & M. S. Chavan (2015). Vedic mathematics for digital signal processing
operations: A review. International Journal of Computer Applications, 113(18), 10-14. https:
//doi.org/10.5120/19924-1503.

N. Hassan Sweilam & T. Abdulrahman Assiri (2015). Numerical scheme for solving the
space-time variable order nonlinear fractional wave equation. Progress in Fractional Differen-
tiation & Applications, 1(4), 269-280. https://doi.org/10.18576/pfda/010404.

P. Jordan (2015). Second-sound propagation in rigid, nonlinear conductors. Mechanics Re-
search Communications, 68, 52-59. https://doi.org/10.1016/j.mechrescom.2015.04.005.


https://doi.org/10.1016/j.ijengsci.2017.06.010
https://doi.org/10.1002/mma.7228
https://doi.org/10.1142/S0218348X22401296
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.3934/math.2022950
https://doi.org/10.1080/01495739.2010.517674
https://doi.org/10.1016/j.aej.2020.02.010
https://doi.org/10.1016/j.mcm.2010.11.074
https://doi.org/10.5120/19924-1503
https://doi.org/10.5120/19924-1503
https://doi.org/10.18576/pfda/010404
https://doi.org/10.1016/j.mechrescom.2015.04.005

N. H. Sweilam et al. Malaysian J. Math. Sci. 19(3): 1179-1196(2025) 1179 - 1196

[14]

[15]

[16]

[26]

S. Julius, B. Leizeronok & B. Cukurel (2018). Nonhomogeneous dual-phase-lag heat con-
duction problem: Analytical solution and select case studies. Journal of Heat Transfer, 140(3),
Article ID: 031301. https://doi.org/10.1115/1.4037775.

A. Khalouta & A. Kadem (2021). A new combination method for solving nonlinear
Liouville-Caputo and Caputo-Fabrizio time-fractional Reaction-Diffusion-Convection equa-
tions. Malaysian Journal of Mathematical Sciences, 15(2), 199-215.

J. Li, Z. Fu, W. Chen & X. Liu (2019). A dual-level method of fundamental solutions in
conjunction with kernel-independent fast multipole method for large-scale isotropic heat
conduction problems. Advances in Applied Mathematics and Mechanics, 11(2), 501-517. https:
//doi.org/10.4208/aamm.OA-2018-0148.

B. Maayah, O. A. Arqub, S. Alnabulsi & H. Alsulami (2022). Numerical solutions and geo-
metric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-
Caputo derivative and the reproducing kernel scheme. Chinese Journal of Physics, 80, 463-483.
https://doi.org/10.1016/j.cjph.2022.10.002.

W. Mahmoud, G. Moatimid, A. Ghaleb & M. Abou-Dina (2020). Nonlinear heat wave prop-
agation in a rigid thermal conductor. Acta Mechanica, 231, 1867-1886. https://doi.org/10.
1007 /s00707-020-02628-4.

S. A. Messaoudi & B. Said-Houari (2004). Blowup of solutions with positive energy in non-
linear thermoelasticity with second sound. Journal of Applied Mathematics, 2004(3), 201-211.
https://doi.org/10.1155/51110757X04311022.

A. S. Moghadam, M. Arabameri, M. Barfeie & D. Baleanu (2020). Numerical solution of
space-time variable fractional order advection-dispersion equation using Jacobi spectral col-
location method. Malaysian Journal of Mathematical Sciences, 14(1), 139-168.

N. T. Phuong, N. T. Thanh Huyen, N. T. Huyen Thu, N. H. Sau & M. V. Thuan (2023).
New criteria for dissipativity analysis of Caputo fractional-order neural networks with non-
differentiable time-varying delays. International Journal of Nonlinear Sciences and Numerical
Simulation, 24(7), 2649-2661. https://doi.org/10.1515/ijnsns-2021-0203.

R. Racke (2002). Thermoelasticity with second sound-exponential stability in linear and non-
linear 1-d. Mathematical Methods in the Applied Sciences, 25(5), 409—441. https://doi.org/10.
1002 /mma.298.

P. Rogolino, R. Kovécs, P. Van & V. A. Cimmelli (2018). Generalized heat-transport equations:
Parabolic and hyperbolic models. Continuum Mechanics and Thermodynamics, 30, 1245-1258.
https://doi.org/10.1007/s00161-018-0643-9.

R. Saghatchi & J. Ghazanfarian (2015). A novel SPH method for the solution of dual-phase-
lag model with temperature-jump boundary condition in nanoscale. Applied Mathematical
Modelling, 39(3-4), 1063-1073. https://doi.org/10.1016/j.apm.2014.07.025.

N. H. Sau, N. T. Thanh, N. T. T. Huyen & M. V. Thuan (2022). Finite-time pas-
sivity for Atangana-Baleanu-Caputo fractional-order systems with nonlinear perturba-
tions. Circuits, Systems, and Signal Processing, 41(12), 6774-6787. https://doi.org/10.1007/
s00034-022-02135-y.

G. D. Smith (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods.
Oxford University Press, Walton Street, Oxford.

1195


https://doi.org/10.1115/1.4037775
https://doi.org/10.4208/aamm.OA-2018-0148
https://doi.org/10.4208/aamm.OA-2018-0148
https://doi.org/10.1016/j.cjph.2022.10.002
https://doi.org/10.1007/s00707-020-02628-4
https://doi.org/10.1007/s00707-020-02628-4
https://doi.org/10.1155/S1110757X04311022
https://doi.org/10.1515/ijnsns-2021-0203
https://doi.org/10.1002/mma.298
https://doi.org/10.1002/mma.298
https://doi.org/10.1007/s00161-018-0643-9
https://doi.org/10.1016/j.apm.2014.07.025
https://doi.org/10.1007/s00034-022-02135-y
https://doi.org/10.1007/s00034-022-02135-y

N. H. Sweilam et al. Malaysian ]. Math. Sci. 19(3): 1179-1196(2025) 1179 - 1196

[27] N. Sweilam, M. Abou Hasan, S. Al-Mekhlafi & S. Alkhatib (2022). Time fractional of non-
linear heat-wave propagation in a rigid thermal conductor: Numerical treatment. Alexandria
Engineering Journal, 61(12), 10153-10159. https://doi.org/10.1016/j.aej.2022.03.034.

[28] N. Sweilam, A. Ghaleb, M. Abou-Dina, M. A. Hasan, S. Al-Mekhlafi & E. Rawy (2022). Nu-
merical solution to a one-dimensional nonlinear problem of heat wave propagation in a rigid
thermal conducting slab. Indian Journal of Physics, 96, 223-232. https://doi.org/10.1007/
$12648-020-01952-8.

1196


https://doi.org/10.1016/j.aej.2022.03.034
https://doi.org/10.1007/s12648-020-01952-8
https://doi.org/10.1007/s12648-020-01952-8

	Introduction
	Preliminaries and Notation
	The MABC Derivative for the Heat-Wave Equations
	Numerical Scheme Formulation Using the MABC Derivative
	Algorithm

	Stability Analysis
	Von-Neumann stability analysis
	Discretized system
	Stability condition

	Truncation Error Analysis
	Error Estimation

	Numerical Experiments
	Implementation and results

	Conclusions

